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rainfall is highly correlated with All India Summer
Rainfall [Parthasarathy et al., 1994]. Over west central
India, the multidecadal wet period is in phase with the
positive AMO phase (warm North Atlantic) during the
middle of the 20th century (!1926–1965); the dry
periods are in phase with the negative AMO phase during
both the early (!1901–1926) and the late 20th century
(!1965–1995) (Figures 1a and 1c). The time series of
west central India summer rainfall is in phase with Sahel
summer rainfall (Figures 1b and 1c). The leading spatial
pattern (EOF 1, from Empirical Orthogonal Function
analysis, Figure 2a) of observed 20th century summer
rainfall anomalies over the region covering both Africa
and India also suggests an in-phase relationship between
India and Sahel summer rainfall. The time series of this
spatial pattern is in phase with the observed AMO index
(Figures 1a and 1d).
[5] The observed AMO Index is also in phase with the

observed time series of the number of major Atlantic
hurricanes and the Hurricane Shear Index (Figures 1a
and 1e), consistent with previous studies [Gray, 1990;
Landsea et al., 1999; Goldenberg et al., 2001]. Here the
Hurricane Shear Index is defined as the anomalous 200-hPa–
850-hPa vertical shear of the zonal wind multiplied by "1,
computed during Hurricane season, August to October-

Figure 1. Observed and modeled variability. The color
shading is the low-pass filtered (LF) data and the green
dash line is the unfiltered data. (a) Observed AMO
Index(K), derived from HADISST [Rayner et al., 2003].
(b) Observed JJAS Sahel rainfall anomalies (averaged over
20!W-40!E, 10–20!N). All observed rainfall data is from
Climate Research Unit (CRU), University of East Anglia,
United Kingdom (CRU-TS_2.1). (c) Observed JJAS west
central India rainfall anomalies (averaged over 65–80!E,
15–25!N). (d) Observed time series of the dominant
pattern (PC 1) of LF JJAS rainfall anomalies. (e) Observed
anomalous Atlantic major Hurricane number (axis on the
left, original data from the Atlantic basin hurricane
database- HURDAT, with no bias-type corrections from
1944–1969 as recently recommended by Landsea [2005],
there is no reliable data before 1944), and observed
Hurricane Shear Index (1958–2000), derived from ERA-40
[Simmons and Gibson, 2000] (m/s, brown solid line for LF
data, brown dash line for unfiltered data, axis on the right).
(f) Modeled AMO Index(K). (g) Modeled JJAS Sahel
rainfall anomalies. (h) Modeled JJAS west central India
rainfall anomalies. (i) Modeled PC 1 of LF JJAS rainfall
anomalies. (j) Modeled Hurricane Shear Index(m/s). All LF
data in this paper were filtered using the Matlab function
’filtfilt’, with a Hamming window based low-pass filter and
a frequency response that drops to 50% at the 10-year
cutoff period. All rainfall time series are normalized by the
SD of the corresponding LF data, i.e. 9.1 and 5.5 mm/
month for Figures 1b and 1g; 12.5 and 7.1 mm/month for
Figures 1c and 1h, 371 and 261 mm/month for Figures 1d
and 1i. Light blue lines mark the phase-switch of AMO.

Figure 2. Leading spatial pattern of the 20th century low
frequency JJAS rainfall anomalies over Africa and India.
(a) EOF 1 (31%) of observed LF JJAS rainfall anomalies.
(b) EOF 1 (67%) of modeled LF JJAS rainfall anomalies.
(c) Regression of observed LF JJAS rainfall anomalies on
observed AMO Index. (d) Regression of modeled LF
JJAS rainfall anomalies on modeled AMO Index. The
observed rainfall is from CRU-TS_2.1. The original
regressions correspond to 1 SD of the AMO index,
Figures 2a and 2c are normalized by the SD of observed
time series of the dominant pattern, i.e. PC1 (371 mm/
month), and Figures 2b and 2d are normalized by the SD
of modeled PC1 (261 mm/month). The modeled EOF1
explains much higher percentage of variance due to
ensemble average.
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WAM, SST & Decadal Variability

Atlantic 
Multidecadal
Oscillation



How does the AMO impact Sahel rainfall in 
observations?

ObjectivesQuestion 1



L L

In Warm AMO Phases:In Warm AMO Phases:



Do CMIP5 models capture the AMO – Sahel teleconnection 
and what processes are occurring/not occurring?

ObjectivesQuestion 2



¤ CMIP5 historical simulations fail to capture the 
amount of decadal variance (>10 years) in 
Sahel rainfall and the AMO

Decadal Variance

Observed CMIP5 Hist. Mean

Sahel Rainfall 45 % 16 %

AMO 66 % 44 %



¤ CMIP5 historical simulations simulate  the 
correlation between between decadally
filtered Sahel rainfall and SST in the North 
Atlantic

Sahel Rainfall – SST Decadal 
Correlation

North Atlantic: r=0.58

Color shows significance of correlation

GREEN > 90 %
YELLOW 70 – 90 %
ORANGE 50 – 70 %
RED < 50 % (e.g. opposite sign to observed)



¤ The performance is even worse when 
considering the relationship with the Indian 
Ocean

Sahel Rainfall – SST Decadal 
Correlation

Color shows significance of correlation

GREEN > 90 %
YELLOW 70 – 90 %
ORANGE 50 – 70 %
RED < 50 % (e.g. opposite sign to observed)

Indian Ocean: r=-0.60



¤ Why do some models with high decadal variance in the 
AMO have high Sahel rainfall decadal variance, but others do 
not?

AMO – Sahel Rainfall

High AMO decadal variance

High Sahel rain decadal variance Low Sahel rain decadal variance

6 “GOOD” 6 “POOR”



mm/day per SD

CRU: OBS GOOD MEAN POOR MEAN

Rainfall Regressed onto AMO 
Index



¤ The spatial pattern of 
the simulated AMO is 
highly important for the 
connection with Sahel 
rainfall

degC
per SD

HadISST

GOOD 
MEAN

POOR 
MEAN

SST Regressed onto AMO Index



¤ Clouds: 
¤ Larger (more realistic) total cloud amount and variability in eastern 

basin of good models
¤ Is total mean cloud amount related to simulation of SST variability?

¤ Dust:
¤ Good models decrease dust over N. Africa with increased SST, as 

expected
¤ Poor models do not

¤ Sulfate Aerosol Indirect Effect
¤ Require sulfates and clouds to be in same location for indirect effect 

to occur
¤ This does not occur in poor models – primarily due to cloud 

distribution

Why is the tropical signal of the 
AMO weak in poor models? 



Can CMIP5 Decadal Hindcasts Predict Sahel Rainfall 
Variability?

ObjectivesQuestion 3



Sahel Rainfall SimulationObjectivesSahel Rainfall

Observations

Decadal 
Hindcasts

Observations

CMIP5 
Historical/RCP45

Grey shading: +/- one standard deviation



Relative SST IndexSahel Rainfall

Understanding Improved SkillSahel Rainfall SkillSahel Rainfall SimulationObjectivesUnderstanding Improved Skill

• A Relative SST index (RSI) is calculated following Giannini et al. (2013) as the annual 
mean subtropical North Atlantic SST minus the tropical mean (20°S-20°N) SST

• Models with a high RSI-Sahel rainfall correlation in historical simulations produce 
more skillful decadal hindcasts for both Sahel rainfall and the RSI



What about the impact on Hurricanes?

ObjectivesQuestion 4



Rainfall Mechanisms: African 
Easterly Waves (AEWs)

Difference in 
Eddy Kinetic 
Energy (EKE) 
between 
warm and 
cold AMO 
phases

¤ AEWs vary decadally with the AMO

African Easterly Waves (AEWs)



• No change in mean 
longitude but change in 
distribution

Increased tropical cyclone 
frequency in warm AMO 
years

à Increased SST

à Decreased vertical wind 
shear

à Increased AEWs

Tropical Cyclone Genesis

13.1 storms per year

7.9 storms per year



AEWs in CMIP5?
A

M
IP

Hi
st

or
ic

al

850 hPa 700 hPa

EKE (m2s-2): CMIP5 – multi-reanalysis mean



¤ SST plays a large role in decadal predictability of Sahel rainfall BUT need 
to improve SST and atmospheric teleconnection to have a real impact 
on Sahel rainfall and potentially hurricane prediction

¤ CMIP5 models with well simulated AMO-Sahel teleconnections have a 
more realistic pattern of SSTs in the North Atlantic but SST errors could be 
due to errors with clouds, aerosol (sulfate and dust), ocean dynamics, 
vegetation?

¤ Decadal hindcasts of Sahel rainfall and the RSI have significant skill. 
Models that produce realistic correlations between the RSI and Sahel 
rainfall in historical simulations (not initialised with observations) have 
more skillful Sahel rainfall decadal hindcasts.

¤ Major errors in the simulation of AEWs in CMIP5 models à potentially large 
impacts on tropical cyclone simulation

Summary 
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¤ Observed changes in wind shear 
with AMO phase
¤ Reduced wind shear in warm AMO 

phases in MDR

¤ Good models similar pattern but 
weaker amplitude

¤ Poor models have little response to 
AMO variability

m/s per SD

Vertical Wind Shear Regressed 
onto AMO Index



Precipitation Annual Cycle

Observations

Discontinuity 
from 
Southern 
hemisphere 
to Sahel

Rainfall peak 
too far South



Gulf of Guinea SST Annual Cycle

As in CMIP3 models: 
Warm anomaly in SE 
Atlantic and Gulf of 
Guinea in summer

Errors of up to 4°C

On interannual 
timescales: 

warm Gulf of Guinea 
= dry Sahel



Sahel Precipitation Annual Cycle

• Summer monsoon 
peak is simulated but 
most models:

• underestimate 
summer peak 

• overestimate 
spring rainfall

Sahel Rainfall Annual Cycle



¤ Larger (more realistic) total cloud amount and variability in 
eastern basin of good models

¤ Is total mean cloud amount related to simulation of SST 
variability?

AMO – Cloud Relationship
ISCCP GOOD MEAN POOR MEAN

Total 
Cloud 
Fraction

Role of Clouds



Dust Response

� Dust load regressed onto AMO index

� Good Models:
◦ As expected increase SST, increase rain, reduce dust

� Opposite seen in poor models

Role of Dust



Shading: 
Mean sulfate 
aerosol load

Stippling: >50 
% total cloud 
fraction

Need cloud and sulfate in same location for indirect effect to occur
✓ Good Models
✕ Poor Models

Role of Sulfate Aerosol 
Indirect Effects


